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We present an example of how vision systems can be modeled and designed by integrat- .. ll-il Ty

ing a top-down computationally-based approach with a bottom-up biologically-motivated :t I Special

architecture. The specific visual processing task we address is occlusion-based object _

segmentation-the discrimination of objects using cues derived from object interposition. L.

We construct a model of object segmentation using hybrid neural networks-distributed

parallel systems consisting of neural units modeled at different levels of abstraction. We

show that such networks are particularly useful for systems which can be modeled using the

combined top-down/bottom-up approach. Our hybrid model is capable of discriminating

objects and stratifying them in relative depth. In addition, our system can account for sev-

eral classes of human perceptual phenomena, such as illusory contours. We conclude that

hybrid systems serve as a powerful paradigm for understanding the information processing

strategies of biological vision and for constructing artificial vision-based applications.

Keywords: vision, neural networks, hybrid systems, biologically-based modeling, hu-

man perception.

I. Introduction

Research in vision has been largely dominated by two philosophies (Marr, 1982). One is the

top-down approach, advocated by those in computer and machine vision, whose primary

aim is developing task-specific visual processing systems. The top-down methodology em-

phasizes computational theory in the development of functional systems. The bottom-up

philosophy proposes that the biological implementation must be considered when studying

visual processing. Since the most efficient and robust "vision machine" to date, and the

yardstick against which all artificial vision systems are usually measured, is the human vi-

sual system, one should not neglect the architecture established by evolution. The bottom-

up advocates claim that "reverse engineering", or using the low-level implementation to

determine the system's functional behavior, is the key to understanding and designing both
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biological and artificial vision systems.

Recently a field, known as computational neuroscience (Sejnowski et al., 1988), has

emerged which realizes the importance of applying both of these approaches simultaneously.

By addressing the problem with regard to both top-down and bottom-up philosophies one

is better able to circumvent the shortcomings inherent to the individual approaches. For

example, an understanding of the neurophysiology and biological circuitry offers a powerful

constraint on the system's function. However, this data is limited and the approach is

not feasible when considering complex high-level processing. In these cases, one might

also consider computational theories and evidence from visual psychology in formulating a

working model of visual processing.

In this paper we present a specific example of how a bilateral approach, incorporating

aspects from top-down and bottom-up methodologies, can he used to model object seg-

mentation and depth processing. We show how traditional biologically-motivated neural

networks can be integrated with networks consisting of functionally complex units to create

a hybrid neural network model. Many elements of the model are consistent with known neu-

rophysiology, while others rely on computational methods and psychological data to arrive

at their design. We will demonstrate with simulations how our hybrid system functions to

segment objects and stratify them in depth. In addition, we will test our model against

human psychophysics, illustrating how it can account for perceptual phenomena, such as

illusory contours (Kanizsa, 1979).

II. Overview of the model

Object segmentation is a categorization process aimed at grouping regions of an image

into meaningful representations. It occurs at an irtermediate stage of the transformation

between 2-D image intensities and visual recognition, and in general, depends upon infor-

mation from multiple visual modalities (such as color, motion, texture and shading). To

simplify the problem, we have restricted ourselves to segmentation based solely on occlusion
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relationships. Occlusion is a consequence of projecting a three dimensional scene onto a two

dimensional receptor array, and results from the interposition of objects with each other or

the background. In a typical visual scene, multiple objects occlude one another, creating

a perceptual dilemma-to which of the two overlapping surfaces does the common border

belong? If the border is, in fact, an occlusion border, then it belongs to the occluding

object. This identification results in a stratification of the two objects in depth and a de

facto discrimination of the objects. For example, consider the case of a horse behind a tree.

We perceive the tree as being closer than the horse, and in addition, the two "halves" of

the horse created by the occlusion are linked into one object. Thus, though occlusion may

isolate different regions of an object, our visual system is able to overcome this difficulty

and provide a consistent and coherent representation of the scene's constituent objects.

A system must identify if an occlusion relationship exists if it is to accurately segment an

image and determine relative depth. Since occlusion implies discontinuous depth, one can

conclude that discontinuities in the image provide important occlusion information. Given

that an object always occludes its background, all objects possess an occluding contour

(Marr, 1977) in their two dimensional image. An occluding contour is a closed curve which

"outlines" an object's silhouette. Though an occluding contour signals occlusion with the

background, it alone gives little information about depth relationships between objects. In

the two dimensional image there are a number of cues which imply object interposition.

Figure 1 illustrates the primary cues for object occlusion. The strongest cue is the T-

junction. At a T-junction the contours of occluding and occluded objects meet. T-junctions

have long been recognized as important cues for scene segmentation (Guzman, 1968). Two

other cues to occlusion are concavities and surrounded contours. Objects at different depths

have overlapping two dimensional images, creating concavities in the occluding contours of

the objects. The presence of concavities can therefore serve as an indicator for occlusion.

Another occlusion cue occurs when a smaller object is in front of a larger object but no

T-junctions are created. In this case the smaller object is completely surround by the larger
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Figure 1: Cues to object occlusion. T-junctions (shown in inset) signal a local discontinuity
between occluded and occluding contours. Concavities and surrounded contours suggest
occlusion, but are not as reliable indicators as T-junctions.

object's occluding contour. This surround condition can be interpreted as a cue to occlusion

(Koffia, 1935), with the smaller object perceived as being closer to the viewer. However,

since objects often contain concavities or surrounded contours (for example an annulus) as

part of their structure, neither concavities nor surrounded contours are as strong a cue to

occlusion as T-junctions.

Our model identifies and uses these occlusion cues to segment the two dimensional image

and determine the relative depth of objects. A schematic of information flow in the model

is shown in figure 2. The system is organized into four main categories of processing; feature

extraction, segmentation and binding, depth processing and completion processing. These

in turn are divided into subcategories which represent functions performed by particular

networks in the system.

The first stage of the model discriminates low-level features. Edges, oriented lines, line

endings and junctions are detected by networks of units selective for these image attributes.

The next stage involves segmentation and binding, which includes grouping features into

proto-objects. We define proto--objects as bounded, simply connected and bpatially contin-

uous surfaces with associated attributes, such as depth, color, and texture. Proto-objects
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are the precursors of objects, since feedback from completion processing (see figure 2) can

group one or more proto-objects into a single object. The third stage of the model involves

completing occluded and occluding contours. In our previous example, the two regions of

the horse separated by the occluding tree are perceptually linked to form a single object. 1

This stage of the model includes mechanisms for linking unoccluded portions of proto-

objects. In addition, occluding contours may be incomplete. For example, the intensity

gradient between the tree and the horse may be small over a region of the image, and

therefore no edge discontinuity is detectable. Thus, unambiguous edges are linked within

the model to form continuous closed occluding contours. The final stage of the model is

concerned with depth processing. Here a cooperative/competitive mechanism uses occlu-

sion cues, identified in the earlier stages of processing, as "forces" for "pushing" objects

into different relative depths. Depth in our model is represented in a distributed fashion

between units in foreground and background networks. This distributed representation of

depth is consistent with how disparity is represented in visual cortex (Poggio et al., 1988;

Lehky and Sejnowski, 1990).

III. Implementation of the model

To illustrate the hybrid nature of our model we will focus on the design, implementation, and

simulation of two specific networks. The complete model is constructed and analyzed using

the NEXUS Neural Simulator (Sajda and Finkel, 1992). NEXUS is an interactive simulation

package designed for modeling multiple interconnected neural maps. Present simulations

consist of 42 topographically organized interconnected networks, each containing an array

of 64x64 units. A paxticularly novel feature of NEXUS is its ability to integrate different

network paradigm's into a hybrid network model. One advantage of hybrid networks is

that they allow one to simulate an entire system with units modeled at several different

levels of abstraction. NEXUS incorporates this variability in the level of abstraction of

'Within our model, the two"halves" of the horse would be classified as proto-objects.
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the individual units by defining PGN (Programmable Generalized Neural) units, which are

capable of executing arbitrary functions or algorithms. PGN units are particularly useful in

situations where intensive computations are performed but the anatomical and physiological

details of the operation are unknown. In addition, instead of representing the function of

a single neuron, PGN units can be used to model large cell assemblies and neural circuits.

For example, a fully-connected winner-take-all circuit can be replaced by a single PGN

unit (see Sajda and Finkel, 1992 for an example of how PGN units can be used in this

fashion). Finally, PGN units allow the user, faced with finite computational resources, to

manipulate the space-time trade-off 2 by reducing explicit network connectivity in favor of

increased algorithmic complexity and processing time.

Our occlusion-based object segmentation system is a hybrid network model consisting

of two classes of units. One set of units explicitly incorporates the known neurophysiology

and connectivity seen in visual areas V1 and V2 into its network circuitry. These units

are used in the early stages of the model (feature extraction and selected networks in the

segmentation and binding stage). Later stages consist of the second class of unit (PGN

units). In these cases, the lack of detailed neurophysiological data prohibits an accurate

model of the neural architecture. However, we have included empirical evidence concerning

the collective network properties of the visual cortex, such as oscillations and phase-locking

(Gray and Singer, 1989; Eckhorn et al., 1988) and corticocortical connectivity (Rockland

and Lund, 1982), into the functional behavior of the PGN units. Thus, though the entire

system is not modeled at the level of the individual neuron, all stages are biologically-

motivated.

In the following sections we will discuss two different networks in our hybrid system,

each modeled at a different level of abstraction. The first functions in determining the local

orientation of lines and contours, and is constructed using well-known physiological data.

The second network uses PGN units to identify the direction of figure, or which side of the
2Tradeoff of CPU execution time and system memory.
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occluding contour is the inside of the object-a problem often formulated as distinguishing

figure from ground (Mumford et al., 1987, Sejnowski and Hinton, 1987). Finally, we will

present simulations of how our hybrid model responds to visual stimuli and compare these

responses to human visual perception.

Orientation network

Neurons selective for orientation have been found in many areas of the visual cortex (Hubel

and Wiesel, 1962), with cortical areas VI and V2 having a majority of cells tuned to

particular orientations. The functional behavior of these cells arises from the nature of

their receptive fields. A receptive field describes a cell's response when selected areas of

the receptor array (in this case the retina) are stimulated. The shape of a receptive field,

and therefore the functional properties of the neuron, can be controlled by regulating the

cell's connection pattern. For example, a center-surround receptive field approximating the

second derivative operator, useful as an edge detector, can be constructed by creating a

small central excitatory set of connections (connections with positive weights) and a larger

surrounding set of inhibitory connections (negative weights). We call this pattern of weights

the connection field of the cell. Figure 3A shows one type of connection field used for the

orientation selective units in our model. Receptor activity at a given location is multiplied

by the connection field value, and then summed to form the input voltage to the cell. A

sigmoidal activation function (see figure 3B), representing the rectification and saturation

properties of biological neuron,;, determines the cell's firing rate given its input voltage. The

result is a unit which responds maximally to a particular orientation. Figure 3C shuws

a tuning curve for a cell having a maximum response for a 00 line. Several orientation

networks are used in the model, each having a different optimal stimulus orientation. The

output of these units contributes to the "form" definition or internal representation of the

proto-objects and serves as an approximation to the local tangent of the contour.
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Figure 3: A Connection field for orientation selective units. A unit having this particular
connection pattern would be selective for fine segments parallel to the y-axis (0' or vertical
orientation). B Sigmoidal activation function for an orientation selective units. C Tuning
curve for a unit having a maximum response for a vertical (0* ) line segment. The width of
the tuning curve can be controlled by modifying either the connection field or the activation
function.
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Direction of figure network

Though networks in the feature extraction stage of the model can identify edges and de-

termine orientation and curvature of contours, they are not sufficient for segmenting the

image into its constituent proto-objects. The remaining part of the problem requires that

the surface of the object be identified. The task of the direction of figure network is to

determine which side of the contour is the "inside" (surface) of the object and which is the

"outside" (background). The problem can be restated as determining which region "owns"

the contour (Koflka, 1935; Nakayama and Shimojo, 1990; Finkel and Sajda, 1992).

A schematic of a neural mechanis,.i for computing the direction of figure is shown in

figure 4A. The function of this circuit is based on the following simple observation. Suppose

a unit projects its dendrites (connections) in a stellate configuration and that these dendrites

are activated by units responding to a particular contour. Then if a given unit is inside a

contour, more of its dendrites will be activated than if it is outside the contour. A winner-

take-all mechanism between two such units will determine which is more strongly activated,

and hence which is the inside of the object. As shown in figure 4A it is advantageous to limit

this competition to the two units which are located at positions directly perpendicular to

the local orientation (tangent) of the contour. It is important to note that this mechanism

is consistent with human perception in that it will fail to identify the correct direction of

figure for selected cases (see figure 4B).

Explicitly modeling the connectivity suggested in figure 4 requires a tremendous number

of connections. Each unit in the direction of figure network receives input which spans the

area of the contour binding network in eight different directions. For example, a direction

of figure unit located at the center of the network would receive input from 8(1 N ) contour

binding units, where N is the number of units in a network. Units at edges or corners would

have fewer inputs (3vrN) due to truncation of connections at network borders. Therefore

each unit in the direction of figure network requires between 3v/W and 4v/N connections

with units in the contour binding network. The total number of connections necessary
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Figure 4: A Neural circuit for determining direction of figure (inside vs. outside), with a
hypothetical input stimulus consists of two closed contours (bold curves). The central unit
of 3x3 array (shown below) determines the local orientation of the contour using the output
from the orientation networks. Surrounding units represent possible directions (indicated by
arrows) of the inside of the figure relative to the contour. All surrounding units are inhibited
(black circles) except for two units located perpendicular to the local orientation of the
contour. Units receive inputs from the contour binding network via dendrites (connections)
that spread out in a stellate configuration, as indicated by the clustered arrows (dendrites
extend over long distances in the network). Units inside the object wil receive more inputs
than those units outside. The two uninhibited units compete using a winner-take-all
mechanism. Note that inputs from separate objects are not confused due to the tags
generated in the contour binding map. B An example of a stimulus where our proposed
neural circuit cannot correctly determine direction of figure for the entire object. At point
1, there will be the same number of inputs from sides a and b, leaving the direction of
figure ambiguous. This is consistent with human perception since subjects have difficulty
instantaneously identifying the inside of the spiral.

12



for a 64x64 network of direction of figure units would therefore be between 780,000 and

1,050,000! This number excludes the connections within the direction of figure network

itself. In addition, these connections are not simple multiplicative coefficients. The activity

in the contour binding network represents a "tag" for the individual occluding contours

defining the proto-objects. Units which lie on the same contour are bound together with

this common tag3 . The connectivity between the contour binding and direction of figure

networks must therefore be selective for particular tags, so that activity is sila-med only for

a single occluding contour. This requires either an increase in the number of connections

and the complexity of the supporting neural circuitry or connections which are functionally

more complex than simple weighting coefficients.

Instead of explicitly establishing the connectivity, we model the function of the direction

of figure network using PGN units. The algorithm we us( is shown in figure 5A and the

spatial layout of a section of the direction of figure notwork is shown in figure 5B. Every

unit in the direction of figure network executes the agr. :*hm in figure 5A. The functional

blocks represent calls to procedures which allow a unit to retrieve the activity of a specific

unit in a network given its spatial location. The regular topology of the model enables

the system to trade-off the memory required for explicit connectivity in favor of increased

execution time required for the calculation of the location of the input cell.

3It has been suggested that the biological substrate for such a binding mechanism may be cortical
oscillations or phase-locking (Gray and Singer, 1989; Eckhorn et al., 1988).
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Figure 5: (previous page) A Flowchart of the algorithm performed by PGN units in the
direction of figure network. The units use procedure calls to determine activity levels in
different networks (see text for discussion). B Illustration showing the layout of units in the
direction of figure network. The unit for which the direction of figure is to be determined
is shown in dark-gray, and the corresponding contour is shown as a solid black curve. The
local orientation and contour binding tag is determined for the dark-gray unit, resulting
in the inhibition of all unit except the two perpendicular to the local orientation (light-
gray). Both these units sum activity in eight different directions by traversing through the
network. For example, shown is the sequence of unit locations checked by the light-!r.
unit lying on the right side of the contour and in the 900 direction. (Dashed dark line
represents location of a second contour segment intersecting i + 3.)

The first function in the algorithm gets the activity in the contour binding network

representing the tag of the local segment of contour. For example, in figure 5B, the contour

binding tag is determined for the dark-gray unit. Next the local orientation is identified

using the activities from the orientation selective networks as inputs. The algorithm then

forks into two different paths so that the summed activity on both sides of the contour

can be determined separately. In figure 5B, this is shown by the two light-gray units

perpendicular to the local orientation of the contour. The activity on either side of the

contour is computed by traversing the network in eight different directions. The first step

involves identifying the contour binding tag of the ith unit along the current direction. If

this tag is equal to the local tag then the activity of the unit representing the particular

contour is increased. If the tags are not equal then the system continues to traverse the

network in the current direction. Figure 5B illustrates how the network is traversed for a

unit on the left side of the contour and in a direction of 90'. Since the i, i + 1, and i + 2

units are not activated by a contour, they do not possess a tag. However, there is activity

at the location of the i + 3 unit. If the contour binding tag at this position is equal to

the local contour tag of the dark-gray unit then the activity of the left light-gray unit is

increased, else the system continues to traverse the network in the 900 dirtction. Once all

directions are traversed, the total activity for the two units on each side of the contour is

compared. The side which has the greatest activity represents the local direction of figure-
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the local direction of the inside of the object and therefore defines the region which "owns"

the contour.

IV. Simulation results

We present results from simulations which illustrate the ability of this hybrid system to

discriminate objects. Figure 6 shows a scene that was presented to the system. The

low-level networks detect edges, line orientation, terminations and junctions present in the

scene. Figure 6A displays the activity in the contour binding network, representing the tags

assigned to the different scene elements. Each box represents elements having a common

tag, different boxes represent different tags, and the ordering of the boxes is arbitrary. On

the first cycle discontinuous elements, such as the two regions of the horse, have separate

tags. Feedback from the completion networks links these contours so that after the second

cycle the contours defining the horse have the same tag.

The output of the direction of figure network for this particular stimulus is shown

in figure 6B. The direction of the arrows indicates the direction of figure determined by

the network. A small portion of the network is enlarged to better illustrate the system's

performance. Note that the system correctly determines that the region representing the

surface of the tree "owns" the vertical contour, while the surrounding contour is "owned"

by the region of the horse.

T-junctions, such as those between the horse and the tree, force the various objects

into different depth planes. The result of this process is shown in figure 6C, which plots

the firing rate (as a percent of maximum) of units in the foreground network. The actual

depth value determined for each object is somewhat arbitrary, and can vary depending upon

minor changes in the scene-the system is designed to achieve the correct relative ordering,

not absolute depth. In addition there is no way to determine the relative depth between the

house and sun because they bear no occlusion relationship to each other. This conforms

with human perception, e.g., the sun and the moon appear about the same distance away.
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The hybrid system thus appears to process occlusion information in a manner similar to

human perception.

The second simulation illustrates that the system displays a response consistent with

human responses to illusory stimuli. Figure 7 shows a stimulus known as the Kanizsa

square (Kanizsa, 1979). Human subjects typically perceive a white square occluding four

black discs and a wireframe square. This perception is somewhat surprising given that

the stimulus can just as easily be interpreted as four black "pacman-like" shapes and four

angular line segments. Some have suggested that the perception of these illusions may arise

from artificially arranged occlusion cues (Gregory, 1972).

Figure 7A shows the output of the direction of figure network after one and three cycles

of activity. The large display shows that the surfaces of the objects (the discs, occluded

and occluding squares) are correctly identified by the network after the third cycle. The

two insets show an enlarged area of the network for both the first and third cycle. At first

the system identifies the "L"-shaped mouth of the pacman as belonging to the disc, as

illustrated by the direction of figure arrows. After the third cycle the "L"-shaped edge is

identified as belonging to the occluding illusory square. This change in ownership of the

edge results from the identification of occlusion-the edge has been identified as an occlusion

border. Figure 7B displays the firing rate of units in the foreground depth map (as in figure

6C), thus showing that the system discriminates relative depth of the constituent objects.

V. Conclusion

We have presented a hybrid system for occlusion-based object segmentation which builds

upon data from several fields, including neurophysiology (Peterhans and von der Heydt,

1989; von der Heydt and Peterhans, 1989), neural computation (Ullman, 1976; Marr, 1982;

Grossberg and Mingolla, 1985), psychophysics and psychology (Kanizsa, 1979; Nakayama,

1990) and computer vision (Rosenfeld, 1988; Fisher, 1989; Aloimonos and Shulman, 1989).

In particular, we have emphasized the hybrid nature of our system by focusing on two
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Figure 6: Object segmentation and stratification in depth. Top panel shows a 64x64 stim-
ulus presented to the system. A Spatial histogram of the contour binding tags (each box
shows a unit with a common tag, different boxes represent different tags, and the ordering
of the boxes is arbitrary). Initial tags are shown on the left and the tags after two cycles
are shown on the right. Note that the linking of occluded contours has transformed proto-
objects into objects (the two sides of the horse have been linked to form a single object).
B Output of the direction of figure network after two cycles. Inset shows a magnified view
of the output of the direction of figure network for a local section of the image. Note that
the system correctly assigns "ownership" of the vertical contour to the region of the tree,
not the region of the horse. C Relative depth of objects in the scene as determined by
the system. Plot of activity (% maximum) of units in the foreground network after two
interactions. Points with higher activity are "perceived" as being closer to the viewer.
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Figure 7: Upper panel shows a stimulus which is perceived by human subjects as an "illu-
sory" square occluding four black discs and a wireframe square (rotated by 450). A 64x64
discrete version of the stimulus was presented to the system. A Direction of figure de-
termined by the system after three cycles. Insets show an enlarged view of a section of
the output after the first and second cycle. For the first cycle the black disc "owns" the
"L"-shaped segment of contour (left). However, once the illusory square is generated the
"ownership" flips to the illusory square (right). B Activity in the foreground network (%
maximum) demonstrating that the network correctly determines the relative depth for this
illusory stimulus.
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subprocesses, orientation and direction of figure, which are modeled at different levels of

abstraction. Finally, we have shown that our integrated system of hybrid networks success-

fully discriminates objects and stratifies them in depth, while also accounting for several

classes of human perceptual response.

A primary goal of both biological and artificial vision systems is object recognition.

Whether the task is to find a deer in the forest or a screw on a conveyor belt, both systems

must somehow recognize objects given a 2D image. Though Ullman (1989) points out that

it is not logically necessary for object discrimination to take place before object recognition,

it seems only reasonable that a visual system, whether biological or artificial, should use

all processes at its disposal to generate meaningful representations of the scene. Our model

suggests that by segmenting an image into its constituent objects, one is better able to

identify that something is a "thing". This in turn should aid in the process of recognizing

what kind of "thing" it is. Future models will extend the hybrid paradigm and integrate

segmentation and recognition processes in order to create more complex models of visual

perception and cognition.
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